Identification of response surface models using genetic programming

نویسندگان

  • T. L. Lew
  • F. Scarpa
  • K. Worden
  • A. Rutherford
  • F. Hemez
چکیده

There is a move in modern research in Structural Dynamics towards analysing the inherent uncertainty in a given problem. This may be quantifying or fusing uncertainty models, or can be propagation of uncertainty through a system or calculation. If the system of interest is represented by, e.g. a large Finite Element (FE) model the large number of computations involved can rule out many approaches due to the expense of carrying out many runs. One way of circumnavigating this problem is to replace the true system by an approximate surrogate/replacement model, which is fastrunning compared to the original. In traditional approaches using response surfaces a simple least-squares multinomial model is often adopted. The objective of this paper is to extend the class of possible models considerably by carrying out a general symbolic regression using a Genetic Programming approach. The approach is demonstrated on both univariate and multivariate problems with both computational and experimental data. r 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...

متن کامل

Reliability Modelling of the Redundancy Allocation Problem in the Series-parallel Systems and Determining the System Optimal Parameters

Considering the increasingly high attention to quality, promoting the reliability of products during designing process has gained significant importance. In this study, we consider one of the current models of the reliability science and propose a non-linear programming model for redundancy allocation in the series-parallel systems according to the redundancy strategy and considering the assump...

متن کامل

IIR System Identification Using Improved Harmony Search Algorithm with Chaos

Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...

متن کامل

Parametric optimization of cylindrical grinding process through hybrid Taguchi method and RSM approach using genetic algorithm

The present investigation proposes a hybrid technique: Taguchi method, response surface methodology (RSM) and genetic algorithm (GA), to analyze, model and predict vibration and surface roughness in traverse cut cylindrical grinding of aluminum alloy. Experiments have been conducted as per L9 orthogonal array of Taguchi methodology using several levels of the grinding parameters. Analysis of va...

متن کامل

DAMAGE AND PLASTICITY CONSTANTS OF CONVENTIONAL AND HIGH-STRENGTH CONCRETE PART II: STATISTICAL EQUATION DEVELOPMENT USING GENETIC PROGRAMMING

Several researchers have proved that the constitutive models of concrete based on combination of continuum damage and plasticity theories are able to reproduce the major aspects of concrete behavior. A problem of such damage-plasticity models is associated with the material constants which are needed to be determined before using the model. These constants are in fact the connectors of constitu...

متن کامل

Artificial neural networks, genetic algorithm and response surface methods: The energy consumption of food and beverage industries in Iran

In this study, the energy consumption in the food and beverage industries of Iran was investigated. The energy consumption in this sector was modeled using artificial neural network (ANN), response surface methodology (RSM) and genetic algorithm (GA). First, the input data to the model were calculated according to the statistical source, balance-sheets and the method proposed in this paper. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005